Discovering Skills with Language

Arvind Rajaraman' Vivek Myers' Anca Dragan'?
'UC Berkeley 2Google DeepMind
{arvind.rajaraman,vmyers,anca}@berkeley.edu

Abstract

Unsupervised reinforcement learning (RL) algorithms promise to learn mean-
ingful behaviors in the absence of a known reward function. In practice, these
approaches fail to scale effectively to high-dimensional settings. The fundamental
issue is that in the absence of additional structure, the unsupervised RL prob-
lem is underspecified: the best we can do is try and discover skills that cover
the full space of behaviors, most of which will be meaningless. In many en-
vironments where we might wish to do skill discovery, language can provide
precisely this additional structure, telling us which behaviors are meaningful
to discover. We argue that applying the structure of pre-trained language em-
beddings as a prior for skill discovery enables us to learn more meaningful
behaviors, demonstrating our approach (DLSD: Diverse Language-based Skill
Discovery) in the open-world Crafter environment. We make our code available at
https://github.com/arvindrajaraman/language-skills-diayn.

1 Introduction

Deep reinforcement learning (RL) permits agents to learn behaviors in the presence of a well-shaped
reward function. Unfortunately, in most real-world settings we do not closed-form rewards that are
aligned with human preferences [1}[2]. For robots to be deployed in the real world and around humans,
they must quickly generalize to unseen downstream tasks (with few-shot examples). Supervised RL
is known to be brittle against task shift, and hand-designing reward functions for many downstream
tasks is hard to scale [3]].

Unsupervised skill discovery algorithms [4H8]], aim to learn a set of diverse behaviors (known as
skills), with the hope that these behaviors can be composed together or guide exploration for some
unseen task at test-time. Skill discovery can also be used to shape exploration in sparse-reward
environments. There is evidence that human children need language for early cognitive development
and skill acquisition in childhood [9}|10]. Unfortunately, skill discovery algorithms fail to learn useful
skills in high-dimensional environments, since agents cannot efficiently figure out what behaviors are
semantically different. High-dimensional environments are known to contain sources of near-infinite
novelty [11].

In this paper, we propose DLSD (Diverse Language-based Skill Discovery), a skill discovery
algorithm that maximizes the mutual information between language descriptions of observations and
skills (see Figure[I). Language is inherently abstractable, recursive, context-sensitive, and is built to
serve humans, making it an effective representation of observations for RL agents. DLSD produces
behaviors that are semantically diverse by discerning between behaviors in the language embedding
space.

Our core contributions are as follows.

1. We show our approach (DLSD) exploits language to improve unsupervised skill discovery
in the absence of a ground-truth reward.

Preprint. Under review.

https://github.com/arvindrajaraman/language-skills-diayn

Policy # |[— a

« »
‘water .
“You see a furnace, trees, cow, sand, water, dirt,

i E (OI) = coal, ad iron. You have a wood pickaxe. You are
i thirsty, hungry, and at moderate health.”

« »
‘wood »
“hunger”

— 21
Discriminator D |—— = 22)
—)

Figure 1: DLSD uses the structure of language to learn behaviors that are more useful to the task at
hand. The language encoder is pre-trained on internet-scale data, including information about survival
games like Crafter. DLSD’s skill-conditioned policy uses raw observations for decision-making,
while the discriminator learns from the language embedding space. By maximizing discernability in
this space, the DLSD policy produces semantically different skills in Crafter.

2. DLSD serves as a more effective mechanism for pre-training a policy than traditional skill
discovery, aligning the learned skills more closely to the distribution of downstream tasks
that humans may request.

3. In the presence of a ground-truth reward function, our approach of maximizing mutual
information between language embeddings and skills can be used as reward shaping bonus,
making it easier to learn complex behaviors than with the ground-truth reward alone.

We demonstrate these claims in the Crafter environment [12], an open-ended 2-D survival game
where an agent most unlock achievements organized in a tree, with harder achievements (e.g. making
a wood sword) depending on the exploration of easier achievements (e.g. collecting wood) . Such
a game requires agents to compose primitive behaviors to achieve high rewards, making it a useful
environment to test the ability of unsupervised RL to shape exploration.

2 Related Work

Our approach lies at the intersection of unsupervised skill discovery and natural language in RL.

Unsupervised exploration. In the absence of a reward function, unsupervised exploration constructs
a pseudo-reward that measures how novel or out-of-distribution a sample is [13}14]. Recent methods
include increasing state-space coverage [[15] measuring the prediction error of a neural network
trained on in-distribution samples [[L1], self-supervision over observed samples [16]], maximizing
mutual information between tasks and policy-induced states [17], and maximizing entropy in an
embedding space [18]]. Exploration can also be done by measuring the inability of the agent to predict
the environment [[19} 20], such as the forward/backward dynamics [21].

Unsupervised skill discovery. Skill discovery aims to learn a diverse set of behaviors. The most
popular is DIAYN [5]], which maximizes the mutual information between states and skills by learning
a neural discriminator that associates states to skills. DIAYN’s discriminator is prone to overfitting
in complex environments though. Other methods include learning the dynamics of behaviors [22]],
seeking behaviors that are hard to achieve with the current set of skills [23]], and learning skills
that can can follow goals zero-shot [8]]. Work has also been done in the discovery of skills within
embedding spaces, such as those that encode behaviors [7] and increasing coverage in embedding
space [6],

Using language in RL. Prior work has seen success in using language to associate high-level
behaviors to primitive language instructions [24-27]], using language to better shape rewards [28-

29 our method

zZ3 /\

23 27 .
Voo

1)

Z4 <// ST o
] /\ AR . j\‘\zs
5 . 6 - Z1

high-dim state space 27

low-dim language subspace

Figure 2: Traditional skill discovery methods that try and cover the full state space do not scale well to
high-dimensional observations (left, skills z in state space). We propose to use language embeddings
as a semantic prior to guide skill discovery (right, skills z in language space). By learning skills
that project down to cover the lower-dimensional language (sub)space, we focus on discovering
meaningful skills in the environment.

31], and using language models to suggest goals that may align to the unknown downstream task
distribution [32, 33]].

3 Using Language to Discover Skills

Traditional skill discovery algorithms fail to produce diverse behaviors in high-dimensional environ-
ments, because the agent is unable to associate complex behaviors with each other. Thus, conducting
discriminator learning in a rich embedding space is necessary to learn a set of useful skills [[7} 6].

We propose that language can precisely serve as an informative embedding space. The use of language
to guide skill discovery in simulated and real-world settings is made easy due to the wide availability
of LLMs [34]. Unsupervised RL algorithms try to manually impose structure to learn more useful
behaviors, such as learning representation functions [6, 18] or imposing some novelty bias [L1]. On
the other hand, DLSD uses language as this structure, making our algorithm easier to scale and
implement.

Language embeddings also exhibit the following qualities:

* Abstraction: Language embeddings provide an inherent weighting of the importance of
certain features. For example, the embeddings for "iron sword" and "stone sword" are
likely to be similar, while. the embeddings of "iron sword" and "iron pickaxe" will be more
different, since the identity of the object is more semantically different than its material
(see Figure[3). Using one-hot embeddings on the above three terms may yield equidistant
embeddings, which is not ideal. Thus, a language-based skill discovery agent can focus on
important features.

* Human Usefulness: Since language embeddings are pre-trained on internet-scale, human-
produced data, these embeddings contain information about what humans do and do not
find useful. This has implications for skill discovery, since language can guide the agent
to behaviors that humans find useful. Also language will contain information on the
downstream distribution of tasks that an agent may be asked to perform by a human.

» Context Sensitivity: The meaning of language changes depending on the information around
it. When conducting skill discovery, language embeddings consisting of lists of entities/items
can quickly learn whether combinations of entities/items are useful. Thus, language gleans
insight into what primitive behaviors are relevant for complex behaviors, a quality important
for semantic skill discovery.

Additionally, the data that LLMs are pre-trained on likely includes information about survival,
exploration, common-sense, and even dynamics of games similar to (or exactly) Crafter. This

information is also useful for real-world exploration and navigation, making language embeddings
easy to scale in real-world settings.

4 Approach

Supervised RL problem. Consider a partially
observable Markov decision process (POMDP)
defined by the state space S, action space A, “You have a wood sword”
observation space {2, reward function R, and
discount factor . Observations o € O are de-
rived from states s € S and actions a € A
via the observation dynamics Q(o | s). States
s are evolved to s’ via the transition dynamics
T(s"| s,a). The ground-truth reward function
Rgyt(0,a,0") returns a scalar given the current
observation, action taken, and next observation.
A reinforcement learning algorithm then trains
a policy 7 to maximize expected rewards.

“You have a wood pickaxe”

Unsupervised skill discovery. Unsupervised
skill discovery modifies this problem by learn-
ing a set of diverse skills z sampled from some
distribution of skills pz(z). The goal is to learn
a skill-conditioned policy 7(a | o, z) that pro-
duces distinct behaviors depending on 2. The Figure 3: Language provides the necessary struc-
ground-truth reward function R is replaced ture for discriminator learning to produce seman-
with a pseudo-reward function R,.(0,a,0’,2) tically different behaviors. While the distances
that also intakes the current skill. between the 3 observations might be equidistant in

We adopt the DIAYN framework from Eysen- one-hot observation space O, "wood sword" and
bach et al. [5], which tries to maximize the iron sword" will be much closer in language space

mutual information between observations and = t'han the fgrmer and "wood plcka’xe.) La.nguage
skills: weights the importance of the item’s identity over

its material. This may facilitate discovering dis-
1(0; Z) = Dk 1(po.z(0,2) || po(0)pz(z)) tinctskills for attacking enemies and mining ore.

“You have an iron sword”

DIAYN introduce a discriminator Dy (z | o) that
classifies an observation to a specific skill, parametrized by ¢. The pseudo-reward function is:

Rpr(olvz) = IOgD(Z | 0/) - logp(z)

Thus, the agent is rewarded for visiting states that the discriminator sees as highly associated with the
current skill z. The discriminator is trained via regression between predicted and ground-truth skills.
The distribution over skills pz(z) in DIAYN is uniform.

Our Method: DLSD. We introduce an observation captioner F that maps observations to language
embeddings. The captioner E is pre-trained on some large, internet-scale corpora of text (details in
appendix [A). It is kept frozen during skill discovery.

In our method, the discriminator Dy(z | E(0)) learns from language embeddings while the policy
m(a | o,z) learns from the raw observations. Language associates states that are semantically
similar, despite being different under primitive distance metrics (like Lo norm). Large distances in
the language embedding space are likely to consistently correspond to observations reached from
semantically different behaviors. While discriminators trained on raw observations achieve high
accuracy early-on in training, they are prone to overfitting to artifacts in the dataset. These artifacts
are unlikely to lead the policy to a diverse set of behaviors.

We do not use language embeddings as input to our policy though, because language is too reductive
to be used for decision-making (e.g. the agent might need to know specific locations and counts of
entities in its environment). We found that passing in both the observation and language embedding
(0, E(0)) degraded performance of the discriminator (see[5.2)

Figure 4: The Crafter environment. The agent must unlock achievements organized in a tree, with
harder achievements depending on the exploration of easier achievements.

In environments where a ground-truth reward function is easily accessible, skill discovery can be
used as an intrinsic motivator to learn a set of primitive yet diverse behaviors. In such a setting, we
trade-off the pseudo- and ground-truth reward to produce the following hybrid reward function:

Ru(0,a,0",2) = Rgi(0,a,0") + ARpr(0,a,0', 2)
=Ryt(0,a,0") + Alog D(z | 0') — log p(z))

We also augment the DIAYN training dynamics with e-greedy exploration, warmup steps, a replay
buffer, and periodic model updates. We found that all of these were necessary for more stable
discovery of skills. Pseudocode can be seen in Algorithm [T} If one does not have access to a
ground-truth reward function, purely the psuedo-reward may be used. We run experiments in both
settings.

Algorithm 1: DLSD: Diverse Language-based Skill Discovery

Initialize policy , discriminator D, replay buffer 3, and captioner E.
Initialize skill z ~ pz(z), state s, and observation o ~ Q(- | s).
for t <— 0 to num_steps do
Sample action: a ~ (- | s, 2).
Step environment: s’ ~ 7 (- | s,a).
Get next observation: o’ ~ Q(- |).
Add transition to replay buffer: B < BU {(0,a,0,2)}.
if terminated then
| Reinitialize skill z, state s, and observation o.
end
if ¢ mod update_freq = 0 then
Sample a batch of transitions {(o;, a;, 0}, 2;) }; ~ B.
Update 7 using DQN [35]] with reward R, (0;, @i, 0}, 2;) + AR g¢(0i, as, 0}).
Update D using Adam [36] by minimizing || D(2; | E(0)) — zi]|2-
end

end

5 Experiments

We run experiments in the Crafter environment [[12]], a 2-D Minecraft-like survival game where an
agent must complete achievements like crafting tools, defeating enemies, and collecting materials
(Fig. @). Crafter achievements are organized in a tree (see Figure 4 of [12]]), where advanced
achievements like making a stone pickaxe depend on primitive achievements like collecting wood.
Crafter worlds are partially observable and procedurally generated, so Crafter agents must learn
general survival tactics and complete long sequences of actions. Such an environment is a perfect place
to explore the performance of unsupervised skill discovery algorithms, where primitive behaviors like
collecting items and navigating need to be composed together to complete the advanced achievements.

Table 1: Comparison with baselines and ablations

No Reward Ground Truth Reward
Achievement DLSD DIAYN APT RND DLSD Hybrid DQN
Wake up 72.4 85.1 85.8 65.1 83.7 87.0
Eat cow 1.14 0.15 0.383 0.409 2.44 5.01
Collect wood 59.1 38.5 44.3 42.6 83.4 88.4
Collect drink 9.33 11.1 19.9 20.1 16.5 29.4
Collect sapling 51.2 32.6 32.1 283 64.4 73.3
Defeat zombie 0.353 0.11 0.147 0.12 1.23 8.85
Defeat skeleton 0.036 0.002 0.013 0.014 0.0690 0.052
Place table 22.5 7.23 9.37 9.37 52.5 61.4
Place plant 36.8 26.2 22.3 20.3 54.2 67.8
Make wood pickaxe 2.46 0.413 0.631 0.693 11.0 8.65
Make wood sword 2.55 0.4 0.591 0.68 9.89 791
Eat plant 0.0 0.0 0.0 0.0 0.0 0.0
Collect coal 0.058 0.003 0.008 0.002 0.23 0.097
Collect stone 0.6 0.055 0.114 0.093 3.0 1.3
Place stone 0.225 0.018 0.047 0.038 1.21 0.5
Place furnace 0.259 0.023 0.045 0.046 1.42 0.477
Make stone pickaxe 0.005 0.0 0.0 0.002 0.022 0.01
Make stone sword 0.0 0.0 0.002 0.0 0.019 0.006
Collect iron 0.002 0.0 0.0 0.0 0.002 0.0
Make iron pickaxe 0.0 0.0 0.0 0.0 0.0 0.0
Make iron sword 0.0 0.0 0.0 0.0 0.0 0.0
Collect diamond 0.0 0.0 0.0 0.0 0.0 0.0
Crafter Score 2.27 1.55 1.71 1.65 3.72 3.93
NLPSV 234 24.5 363 364 - 362

Our experiments include DLSD on both the hybrid reward and solely the pseudo-reward. These are
the baselines we benchmark DLSD against:

* DIAYN [5] - This method performs mutual information (MI) maximization over the raw
observations and skills. We compare this against DLSD, which maximizes (MI) over the
language embeddings and skills, in order to measure the ability of language to help the agent
learn “meaningful” behaviors (specifically, the 22 achievements outlined in Crafter) without
directly training on them.

* RND [L1] - This unsupervised exploration method computes novelty by passing observations
into a randomly initialized network and then computing the prediction error of a fine-tuned
network on this random embedding. The latter network provides a measure of how in-
distribution an observation is.

e APT [18] with ICM [21]] - APT is an unsupervised exploration method that trains an
observation encoder and produces a pseudo-reward that is precisely the distance to an
observation’s k-nearest neighbors in the encoder’s output space. We train this encoder by
measuring how well the agent can predict the forward/backward environment dynamics
given samples so far. Further implementation details are in Appendix [C] RND and APT
serve as novelty-based exploration baselines to demonstrate whether DLSD’s skills seek
useful novelty.

* DQN [35] - We train DQN on the ground-truth reward to benchmark how effectively DLSD
with hybrid reward can shape exploration.

We report the following metrics for each of our experiments:

* Achievement rates A;: For a specific achievement, this represents the percentage of training
episodes for which this achievement was unlocked at least once.

<]]
= =
O 34 o i
9 Q.| = ereeesmsm===
%) AR 2 /{_—i
= - Lo——
O 21 _/—'-’/—’—_—_ Q 7
- -~ 1
&< b= ’
[o 11 |
= 19 =]
)) |
01 0
0.0 05 10 15 20 0.0 05 10 15 20
. 6 . 6
Environment Steps ~ *10 Environment Steps 10
—— DLSD (Hybrid) —— DLSD DIAYN —— DLSD (anneal) ——- DLSD (discrete)
DON APT RND DIAYN (anneal) DIAYN (discrete)

(a) DLSD outperforms DIAYN in terms of overall (b) Comparison of DLSD and DIAYN as pre-training.
Crafter score by using language embeddings as a DLSD adapts more readily to the ground-truth reward
proxy for “human usefulness.” both directly (discrete) and when annealed.

Figure 5: Comparison of approaches by overall score.

* Crafter score: This is the original environment reward from Hafner [[12]:
1 2
Craft =S —) log(1004; +1)) —1 1
rafter score exp<22 ; og (+)) (1)

In other words, the Crafter score is a geometric mean over the 22 achievement rates in Crafter.
This is chosen over the arithmetic mean to reward agents for achieving new achievements
instead of exploiting already-solved achievements. The +1 and —1 terms are added for
numeric stability and 100 is added to provide a more human-readable score.

* NLPSV (Negative Log Product of Singular Values) metric: A diverse set of skills ideally
produce behaviors that complete different sets of achievements. This metric aims to measure
exactly that. Our motivation is that the determinant of a square matrix (which is the product
of its singular values) measures the orthogonality of its rows. Extending this idea to our
setting, consider the matrix of achievement rates per skill. The product of singular values of
this matrix represents the ability of an algorithm to produce more diverse beahviors. We
take the negative log of this value for readability purposes, making a lower quantity more
desirable.

Our results are summarized in Fig. E], and Table [1|shows the achievement rates, Crafter score, and
NLPSYV for each algorithm, grouped into those with exposure to the ground-truth reward and those
without. The highest achievement rate, highest Crafter score, and lowest NLPSV are bolded among
each group. The achievement rates are topologically sorted based on how early they are in the
Crafter achievement tree. All rates are averaged over 5 random seeds. The best value is bolded
amongst the algorithms without exposure to the ground-truth reward (DLSD, DIAYN, APT, and
RND) and amongst those with exposure (DLSD Hybrid and DQN). DLSD considerably outperforms
DIAYN on the Crafter score, even when not exposed to the ground-truth reward. Though the novelty-
seeking baselines (APT and RND) outperform DIAYN in terms of Crafter score, language permits
DLSD to considerably beat those baselines. For individual achievements as well, DLSD consistently
outperforms the other baselines.

In addition, the NLPSV of DLSD is the lowest of all methods, providing evidence that our method is
more effectively learning diverse behaviors under a set of behaviors that humans find useful. This
furthers our claim (1) that language is a more effective modality than raw observations for skill
discovery.

The achievement rates of DLSD hybrid also provides evidence of claim (3). While the DQN agent
is able to exploit more primitive achievements effectively, DLSD trained on hybrid reward is able
to unlock more difficult achievements at higher rates, showing that mutual information between
language embeddings and skills serves as a scalable intrinsic reward in open-ended environments.

25
[}
g | g2 _—
] (9]
9 20 A
o4 = [
3} 1] |
=
E 5 k!
< L s
H @]
©) 0
1.0 " " 0.0 0.5 1.0 1.5 2.0
10 10 . o
Number of Skill Environment Steps x10
u ero s —— Only E(0) oand E(0)

—— DLSD DIAYN

(a) We check the robustness of our DLSD approach (b) We test whether the skill discovery agent can
across different numbers of learned skills. By us- learn more effectively when learning from both the
ing language, DLSD consistently outperforms the = language embedding and raw observation.
non-language DIAYN.

Figure 6: Ablations of our DLSD approach.

5.1 Pre-Training Experiments

We additionally test the ability of DLSD to pre-train a policy and fine-tune on the ground-truth reward
once it is known. We test two pre-training regimes:

* Discrete: For the first half of training, the agent discovers skills using pseudo-reward. For
the second half of training, the agent then solely optimizes on the ground-truth reward.

* Anneal: The reward is linearly annealed between fully using the pseudo-reward in the
beginning of training and fully using the ground-truth reward by the end of training. We use
A=5.

As seen in Figure [5} DLSD outperforms DIAYN by a marginal amount in both the discrete and
annealed settings. The annealed settings do better overall likely because the Q-network can slowly
adjust to the change in magnitudes of rewards.

This furthers claim (2) that DLSD learns a more easily adaptable and generalizable policy initialization
when the downstream task distribution is human-aligned but unknown.

5.2 Ablations
We performed the following ablations:

* Quantifying how the number of skills DLSD uses impacts the ability to learn human-useful
diverse behaviors.

* Whether the discriminator can learn more effectively when learning from both the language
embedding and raw observation.

The results of these ablations are shown in Figure[6] Increasing the number of skills provides a slight
improvement to DIAYN but not for DLSD, showing that the language embedding space allow even a
small skill size to permit the discovery of diverse behaviors.

Looking at the next ablation, surprisingly providing both the raw observation and language embedding
degrades skill discovery. The raw observation in a complex, open-ended environment likely contains
much more noise than signal, so much so that it is unable to learn with an informative language
embedding. Thus, we omit the raw observation to the discriminator in our experiments.

6 Conclusion

DLSD provides evidence that language-based skill discovery can help shape exploration in open-
ended environments both in the presence of and without ground-truth reward. This is because the
language embedding space guides the discovery towards skills that humans likely deem useful.

Some future work of interest includes testing the use of language with other value learning or policy
optimization algorithms, increasing the diversity of captions (by prompting an LL.M) to adapt to
a wider variety downstream tasks, utilizing multi-modals to effectively learn from both visual and
language inputs, fine-tuning the language model on information from survival games like Minecraft
(where there is a plethora of online content), and testing skill discovery on robots traversing real-
world terrain. Other ways to bring language in the loop with some inductive bias on the task (like
language-based goals and instructions) are also promising.

Limitations and Societal Impact. Some limitations of DLSD include the length of training time
(as compared to imitation learning approaches) and reliance on a large language model, making
discriminator learning slower. Our paper shows that DLSD exhibits more human-aligned skill
discovery than DIAYN, which may help in assistive settings. It should be noted though that deploying
skill discovery systems in the real world will require guardrails and safety, since unsupervised RL
more weakly learns from human intent than explicit language instructions in supervised settings.

References

[1] Dylan Hadfield-Menell, Stuart J. Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 2016.

[2] Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. Preventing Reward Hacking with Occu-
pancy Measure Regularization, March 2024.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In Proceedings of the 34th International Conference on Machine
Learning, pages 1126-1135. PMLR, July 2017.

[4] Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic motivation in
reinforcement learning, November 2019.

[5] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function, 2018.

[6] Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-
aware abstraction, 2024.

[7] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
Cic: Contrastive intrinsic control for unsupervised skill discovery, 2022.

[8] Seohong Park, Jongwook Choi, Jackyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery, 2022.

[9] Virginia A Marchman, Elizabeth Bates, Amy Burkardt, and Alice B Good. Children’s acquisition
of the passive: Revealed preference for the semantic mapping of patient. Language Acquisition,
1(1):67-104, 1991.

[10] Kathleen McClure, Julian M Pine, and Elena VM Lieven. Putting object-knowledge to work:
Tracking the roles of object representations for language learning. Language Learning and
Development, 2(3):201-218, 2006.

[11] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation, 2018.

[12] Danijar Hafner. Benchmarking the spectrum of agent capabilities, 2022.

[13] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation, 2016.

[14] Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-yves Oudeyer. Ex-
ploration in model-based reinforcement learning by empirically estimating learning
progress. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/
a0a080£f42e6£13b3a2df133f073095dd-Paper. pdf.

https://proceedings.neurips.cc/paper_files/paper/2012/file/a0a080f42e6f13b3a2df133f073095dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/a0a080f42e6f13b3a2df133f073095dd-Paper.pdf

[15] Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine.
Skew-fit: State-covering self-supervised reinforcement learning, 2020.

[16] Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward:
Self-supervision for reinforcement learning, 2017.

[17] Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features, 2021.
[18] Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training, 2021.

[19] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration, 2017.

[20] Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models, 2015.

[21] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction, 2017.

[22] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills, 2020.

[23] Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsuper-
vised skill discovery, 2023.

[24] Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned
language abstraction, 2021.

[25] Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar,
and Sergey Levine. Zero-Shot Robotic Manipulation with Pretrained Image-Editing Diffusion
Models, October 2023.

[26] Vivek Myers, Andre Wang He, Kuan Fang, Homer Rich Walke, Philippe Hansen-Estruch,
Ching-An Cheng, Mihai Jalobeanu, Andrey Kolobov, Anca Dragan, and Sergey Levine. Goal
Representations for Instruction Following: A Semi-Supervised Language Interface to Control.
In Proceedings of The 7th Conference on Robot Learning, pages 3894—3908. PMLR, December
2023.

[27] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding Pretraining in Reinforcement Learning with Large Language
Models, February 2023.

[28] Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Using natural language for reward
shaping in reinforcement learning, 2019.

[29] Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations
to actions with reinforcement learning, 2017.

[30] Nicholas Waytowich, Sean L. Barton, Vernon Lawhern, and Garrett Warnell. A narration-based
reward shaping approach using grounded natural language commands, 2019.

[31] Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen James, and Pieter
Abbeel. Language Reward Modulation for Pretraining Reinforcement Learning, August 2023.

[32] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models, 2023.

[33] Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun,

and Joseph J. Lim. Bootstrap Your Own Skills: Learning to Solve New Tasks with Large
Language Model Guidance, October 2023.

10

[34] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[37] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[38] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

[39] DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio
Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo
Hou, Steven Kapturowski, Thomas Keck, Turii Kemaev, Michael King, Markus Kunesch, Lena
Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Milo$ Stanojevié, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind,

[40] Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended
reinforcement learning, 2024.

A Captioner Design

We created a hard-coded observation captioner for Crafter with the following format:
"""You see {blocks}.

You see {mobs}.

You have in your inventory {items}.

You feel {vitals}.

You are at {health level} health."""

The terms “blocks,” “mobs,” and “items” are comma-separated lists of what blocks, mobs, and items
are visible to the player. Note that because Crafter is partially observable, the blocks/mobs listed are
those near the agent.

"non

The term "vitals" is populated with "hungry", "thirsty", and/or "tired", if any of these vitals are below
10.

The term "health level" is populated with "low" if the agent’s health is less than 5, "moderate"” if less
than 10 but greater than or equal to 5, and "full" if equal to 10.

If any of the lists above were empty, then we omitted that sentence. For example, if there were no
items in the player’s inventory, then the term "You have in your inventory {items}." would be omitted
from the caption.

After constructing the caption for a specific observation, we pass in the caption to HuggingFace’s
sentence-transformers/all-mpnet-base-v2 LLM [34] as our embedding model. This model
outputs language embeddings of size 768.

11

http://github.com/google/jax
http://github.com/google/flax
http://github.com/google-deepmind

B Experimental Details

We use the JAX framework [37H39]], a JAX-based implementation of Crafter [40], and the
sentence-transformers/all-mpnet-base-v2 model from HuggingFace [34] as the observation
captioner.

We trained our models on NVIDIA RTX A6000 GPUs within an internal cluster. Each seed took
approximately 5-10 hours to train and evaluate.

C Algorithmic Details

DIAYN. We use DQN [35] as our policy learning method, with a Polyak-averaged target network
(7 = 0.001) and discount factor v = 0.99. All experiments were run for 2M steps (which includes
10K warmup steps where the networks are not trained). Each episode was allowed to run for a
maximum of 1K steps. We used e-greedy exploration for all experiments, where € was initialized
to 1 and exponentially decayed to 0.1 by 75% of training. The last 25% of training continued with
e=0.1.

We use a symbolic representation of Crafter (provided by the Craftax implementation [40]) in our
experiments, which returned observations of size 1345. The observations include 21 one-hot grids
of whether a specific mob/item exists at a certain position relative to the user, the item counts in the
agent’s inventory, player vitals/health levels, direction, light level, and whether the agent is sleeping.
We opted for this symbolic representation to focus our experiments on the ability of DIAYN to discern
between language embeddings and not worry about learning a good image representation.

The policy (and discriminator in the DIAYN experiments) first separates the observation into the 21
one-hot grids and other metadata. The grids are then passed through the following layers:

* Convolutional layer: 32 output channels, (3, 3) kernel size
* ReLU activation
* Convolutional layer: 64 output channels, (3, 3) kernel size

¢ ReLU activation

This grid representation is then flattened and concatenated with the other metadata, after which it is
fed to downstream layers.

The Q-networks take as input the processed grids/metadata, followed by a dense layer of output size
768, ReLU, dense layer of output size 768, ReLU, and a dense layer of output size 17 (corresponding
to the number of actions). The discriminator either takes the language embedding or processed
grids/metadata, followed by dense layer of output size 768, ReLU, dense layer of output size 768,
ReLU, and a dense layer of output size 5 (corresponding to the number of skills). The discriminator’s
and policy’s learning rate are both 1e — 3, with the models being updated every 20 environment steps.
Both are trained on samples from a replay buffer with size 50K and batch size of 512. In our hybrid
reward experiments, we use A = 0.2.

In order to enjoy the benefits of JAX parallelization, we vectorized our rollouts and model updates to
occur in batches of 100. This meant that we took 100 environment steps in parallel and performed
several model updates per iteration. Our experiments were trained on a cluster of § NVIDIA RTX
A6000’s.

RND. We set RND’s [11] embedding size to 768. The RND network follows the same settings as the
discriminator above.

APT. We set APT’s [18]] embedding size to 768 and k = 5 (where k is used in the algorithm’s k-
nearest neighbors subroutine). The neural encoder is trained by predicting the forward and backward
dynamics of Crafter. The forward and backward dynamics model follow the same architecture as the
discriminator. Pseudocode is provided in Algorithm 2]

ELLM. We use the default settings used in the ELLM repository [32].

Hyperparameter sweeps. We swept over the following values for DIAYN:

12

Algorithm 2: APT by Learning Environment Dynamics

Initialize policy 7, encoder E, forward dynamics model F', backward dynamics model B, and
replay buffer B.
Initialize state s and observation o ~ (- |).
for ¢ < 0 to num_steps do
Sample action: a ~ 7(- | s, 2).
Step environment: s’ ~ T (- | s, a).
Get next observation: o’ ~ Q(- |).
Add transition to replay buffer: B <+ BU {(0,a,0')}.
if current episode is terminated then
| Reinitialize state s and observation o.
end
if t mod 0 = model_update_frequency then
Sample a batch of transitions {(0;, a;, 0})}; ~ B.
Compute embeddings of the observations: E(o;) and E(0}).
Forward error := ||F'(0;,a;) — E(0})]|2
Backward error := || B(0;, 0}) — a;||2
Update 7 using DQN [33] with the k-nearest neighbors reward detailed in APT [I8].
Update F, F, B using Adam [36] by minimizing forward error + backward error.
end

end

Hyperparameter Values
Policy learning rate [0.0001,0.0005,0.001,0.005, 0.01]
Discriminator learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01]
Policy hidden size [768, 1024, 2048]
Discriminator hidden size [768,1024, 2048]
Percentage of training to end e-decay [25, 50, 75,90]
Model update frequency [1,5, 10, 20]
Pseudo-reward coefficient A [0.01, 0.02, 0.1, 0.2, 1, 2, 10, 20, 100]

D Achievement Success Rates

Figure[7|shows the achievement success rates for DLSD (Hybrid), DLSD, DIAYN, RND, APT, and
the DQN. The achievements are topologically sorted based on Crafter’s achievement tree, so harder
achievements are shown later. DLSD (Hybrid) outperforms even direct training on the ground-truth
reward (DQN) on several late-stage achievements, and DLSD consistently outperforms DIAYN and
the unsupervised exploration baselines.

13

Success Rate Success Rate

Success Rate

Success Rate

Success Rate

08 F—
o] |
04
02
00
00 05 10 15
Environment Steps 1%
Collect Sapling
06
04 /
02
00
00 05 10 15 20
Environment Steps *10"
Place Plant
06
04 //’/_,_//
02
00
00 05 10 15 20
Environment Steps *1%"
«10-> Collect Coal
2 f/\//ﬁ'w
1
1 _,f—/ﬁ_‘"
00 05 10 15 20
Environment Steps 1%
Make Stone Fickaxe
<1074
6
4
2 P/,h et
N ;
B
00 05 10 1 20

Environment Steps *1%"

X10-2 Eat Cow
ED
5
~
R4
8
o
g
52
@ //‘//
B —
ol -
00 05 10 15
Environment Steps 1%
Defeat Zombie
o
)
5 0100
o
P 0075
8
§ 0050
& oos
et
0,000
00 05 10 15 20
" .
Environment Steps *1¢
Make Wood Pickaxe
0125
2 0100 —1
5
& 0075
Py
3
& 0050
5
F 00 __——
0000
00 05 10 15 20
Environment Steps 1%
«10-2 Collect Stone
’E
2
2
&
R
3
@ o
0
00 05 10 15 20
Environment Steps 1%
Make Stone Sword
1074
10
@
)
&
P
2 2
g - 4
g P
30 N
b3
00 05 10 1 20
Environment Steps *1%
«10-2 Make Iron Sword
4
£
5
S 2
2 0
8
g
g -2
@
-4

00 05 10 15 20
Environment Steps 1%

Success Rate

Success Rate

Success Rate

Success Rate

0100

0075

0.050

g 8§

Success Rate

Success Rate

Collect Wood

—

00 5 10 15 20
Environment Steps 1%

<10+ Defeat Skeleton

oy

Iy

00

PR
Environment Steps *10°

Make Wood Sword

///
R

Environment Steps 1"

«10-2 Place Stone

F e

0.0 05 10 15 20
Environment Steps 1

«10-+ Collect Iron

T~

o0 05 1o 15 20
Environment Steps 1"

«10-2 Collect Diamond

00 10 15 20

Environment Steps 1"

Success Rate Success Rate Success Rate Success Rate

Success Rate

05

00

Collect Drink

0 o5 10 15
Environment Steps 10"

Place Table

//f

0 o5 10 15 20
Environment Steps *1*"

x10-2 Eat Plant

00 T 15 20
Environment Steps 1"

«10-2 Place Furnace

g
0 05 10 15 20

Environment Steps 1

«10-:Make Iron Pickaxe

00 o 0 15 20
Environment Steps 10"

—— DLSD (Hybrid) RND
APT DIAYN
— pLsD Oracle

Figure 7: Achievement success rates per method across training.

14

	Introduction
	Related Work
	Using Language to Discover Skills
	Approach
	Experiments
	Pre-Training Experiments
	Ablations

	Conclusion
	Captioner Design
	Experimental Details
	Algorithmic Details
	Achievement Success Rates

